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Probability distributions of thermodynamic intensive variables are derived from 
the Gaussian law of error for extensive variables. Bayesian distributions, in the 
sense of degree-of-belief, are derived by interchanging the endpoints of the 
interval and transforming the probability distribution into one dependent upon 
a parameter which is to be estimated from the sample data. Legendre transforms 
of the probability distribution for extensive variables lead to dual distributions, 
in the frequency sense, for the conjugate thermodynamic intensive variables. 

1. DUALITY IN T H E R M O D Y N A M I C S  AND STATISTICS 

Both thermodynamics and mathematical statistics classify variables 
into two categories according to whether they are extensive or intensive, in 
thermodynamics, and observable or estimable, in statistics. The Bayesian 
method makes the further distinction of  whether the variables are to be 
interpreted in the limit-of-frequency sense or in the sense of  degree-of-belief. 
Moreover, there exists an inherent asymmetry in the two categories where 
prominence is given to the primary set of variables which are extensive and 
observable. The primary set defines the state of the system in thermo- 
dynamics, while in statistics it comprises the sample data. The secondary 
set links the system to the outside world; it consists of  the intensive variables 
in thermodynamics and those parameters which define the state of nature 
in statistics. These quantities are derived; in thermodynamics, they are 
obtained by partially differentiating the fundamental relation that describes 
the thermodynamic properties of  the system, while in statistics they are 
estimated in terms of the observations. The estimators of  the intensive 
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variables, which are random quantities since they are functions of the sample 
data, can be interpreted both in the sense of limit-of-frequency and degree- 
of-belief. Therefore, the secondary set must also possess well-defined prob- 
ability distributions and, in this paper, we will derive these distributions 
from the Gaussian law of error for their conjugate extensive variables. 

A thermodynamic state of the system is specified by a set of extensive 
thermodynamic variables, which, according to statistical mechanics, 
coincides with the average energy O, volume 17, and mole number N. The 
thermodynamic properties of the system are deduced from the fundamental 
relation which expresses the entropy S in terms of the independent extensive 
variables (Callen, 1985). The secondary set of thermodynamic variables 
consists of the temperature T, the pressure, and the chemical potential. 
These intensive quantities are defined by the partial derivatives of the 
fundamental relation with respect to their conjugate extensive variables. By 
a rotation of the Gibbs space, the fundamental relation can be inverted so 
that the energy U is made a function of the independent extensive variables, 
which now consist of S, V, and ~r. This is known as the energy representation 
and is limited to the analysis of reversible processes. 

Observable variables are measurable and since a measurement can 
never be performed with unlimited precision, a distribution in the possible 
values that the extensive variables can assume will be set up about their 
most probable values. Since these variables are additive, the most probable 
value will be assumed to coincide with the sample mean, which will be 
assumed to coincide with the mean of the distribution. This, in general, will 
be rigorously so when the sample size is allowed to increase without bound. 
However, due to the particular properties of the distribution, it will be true 
for any value of the sample size. 

Estimable variables are parameters upon which the probability distribu- 
tions of the extensive variables depend; they define the state of nature of 
the system by relating the probability distributions to the properties of the 
physical system under investigation. If the state of nature was known with 
certainty, an observation would not be informative and there would be no 
need to deal with probability distributions. The estimators of the parameters 
defining the state of nature are random variables since they are functions 
of the sample data. 

Statistical thermodynamics deals only with estimators that are sufficient 
statistics (Mandelbrot, 1962). In a physical sense, sufficient statistics sum- 
marizes all the "information" there is about the parameter that is contained 
in the sample. In a mathematical sense, the conditional probability of any 
other statistic, given the sufficient statistics, is independent of the parameter 
to be estimated (Lindley, 1970). Sufficient statistics, whatever the sample 
size, exists for the exponential family of distributions. These distributions 
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introduce a certain duality, which will be explored in this paper, in the 
sense of a Legendre transform between observable and estimable variables. 

In the entropy representation, the most fundamental p, air of conjugate 
variables is the energy O and the inverse temperature /3, which will be 
measured in energy units where Boltzmann's constant is unity. The distribu- 
tion of the energy depends upon a parameter/3 whose "true" value is the 
inverse temperature/3. The problem of point estimation consists in estimat- 
ing/3 from observations Ui of the energy. These values can be taken from 
a single system or different subsystems which are subsequently allowed to 
interact thermally so as to form a composite system. Although sampling 
from a large population is the usual procedure in statistics, the structure 
of statistical thermodynamics favors the latter interpretation (Mandlebrot, 
1962; Lavenda and Scherer, 1988). If the sample size was to increase without 
bound, certainty would be obtained in the limit. However, at some stage, 
the additivity of the extensive variables would break down together with 
the property of sufficiency (Mandelbrot, 1956). 

The natural choice for the sufficient statistic is the sample mean, 

O= 1 u, (1) 
m i = l  

owing to the additivity property of the energy. The assertion that (1) is a 
sufficient statistic for the estimation of the inverse temperature simply means 
that the conditional probability of observing the value Ui of any subsystem, 
given the total energy m U of the composite system, is independent of the 
common value of the temperature when the subsystems are brought into 
thermal contact and left alone for a sufficiently long period of time so as 
to secure thermal equilibrium (Mandelbrot, 1956). 

Any estimate of the temperature is itself a random variable, since it is 
a function of the sample energies. A sufficient statistic requires that the 
converse is not true. This is in complete harmony with the second law: 
The concavity of the entropy with respect to the energy ensures that there 
is a unique solution, fl = /3(0) ,  to 

s'(O) = ~ (2) 

where the prime stands for differentiation, while the convexity of the entropy 
with respect to the inverse temperature is independent of the energy. 

The statistical correlations between any estimator of the inverse tem- 
perature and the sample values of the energy, of which it is a function, is 
summarized by the thermodynamic uncertainty relations (Lavenda, 1987; 
Lavenda and Scherer, 1988; Mandelbrot, 1956; Tikochinsky and Levine, 
1984). The thermodynamic uncertainty relations in the case of the energy 
and inverse temperature can be discussed in terms of the size of the 
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thermostat with which the system is in contact (Mandelbrot,  1956). As the 
thermostat shrinks in size, measurements of  the energy become increasingly 
more precise at the expense of those of the temperature. In the limit where 
the thermostat vanishes, it is no longer possible to define a temperature. As 
the thermostat increases in size, measurements of  the energy become increas- 
ingly less precise, while those of  the temperature become more precise. 

There are two different types of  probability distributions for the inverse 
temperature; both can be derived from the fundamental error law for the 
energy. In one case, we want a rational degree-of-belief of the inverse 
temperature given the sample mean energy. The randomness of fl is in the 
sense of  degree-of-belief that certain values are more probable than others. 
In Section 3, the likelihood function is obtained simply by interchanging 
the endpoints of  the interval in the error law for the energy. This function 
is a measure of the "l ikel ihood" of/3 and it is only natural to choose that 
value whose " l ikel ihood" is a maximum. Since we are dealing with the 
Legendre transform of  the entropy, the stationary condition is entirely 
equivalent to the second law which  defines the inverse temperature. In 
Section 5, we inquire about the probabi l i tyof  making an error by "guessing" 
a certain value of/3 whose true value is/3. This probability distribution is 
defined in the limit-of-frequency and is derived from the Legendre transform 
of  the entropy in the fundamental error law for the energy. In exactly the 
same way that the error law for an extensive variable is expressed in terms 
of  the concavity criterion of the entropy, the error law governing its conjugate 
intensive variable is expressed in terms of  the concavity condition of  the 
Legendre transform of the entropy. 

2. LAW OF ERROR FOR THE ENERGY 

For simplicity, we will consider deviations in the energy, holding 
constant the volume and mole number. The thermodynamic stability proper- 
ties of the system are couched in the strict concavity properties of  the 
entropy (Galgani and Scotti, 1970; Lavenda and Dunning-Davies, 1990) 

S"(O) < 0 (3) 

An alternative definition of  concavity employs the truncated Taylor series 
expansion (Hardy et al., 1952) 

s (  u,)  = s (  O) + s '(  O)( u, - 0)+�89 s"( u ) (  u, - 0 )  2 

where U lies between U~ and O. On the strength of inequality (3) we have 

s ( u , )  - s ( O )  - s '(  0 ) (  u, - O)  < 0 (4) 

as an alternative criterion of concavity. This criterion of concavity is related 
to the existence of a probability distribution for the energy (Lavenda and 
Dunning-Davies, 1990). 
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Denote by f (  U~[ O) the probability that an observation of the energy 
of any of the m subsystems will result in an energy Ui whose most probable 
value is the sample mean (1), which, by assumption, is equal to the mean 
of the distribution. Since the energies of the m subsystems are independent, 
the joint or "sample" probability is 

f ( U ~ , . . . ,  Um[O)= fi f(Ui]O) (5) 
i = 1  

If the sample mean (1) is the most probable value of the energy, then the 
joint probability distribution (5) will satisfy the stationary condition 

f~/ f~ = 0 (6) 
i = l  

where we have abbreviated the notation, f~ = f (  U~[ U), and the prime stands 
for differentiation with respect to U. 

If we fix the sample mean, which is another way of saying that the 
composite system is isolated, having a total energy mU, it will act as a 
constraint on the extremum principle. The constrained variational principle 
can be converted into a free one by the usual method of Lagrange multipliers. 
Instead of (6), the stationary condition of the free variational principle is 

f f / f ~  + S"( 0)(  U, - U) = 0 (7) 
i = l  

where the second derivative of the entropy plays the role of a Lagrange 
multiplier. Since the energies of the subsystems that form the composite 
system are now all independent, condition (7) must be satisfied for each of 
the rn subsystems. Integrating by parts then gives 

logf (  U~[ O) = @(U~) - S ( O )  - ( U~ - O ) S ' (  O )  + log A 

where A is a normalization constant. In order that f(U~[ O) lie between 0 
and 1, the right side must be negative for all values of U~ and O that are 
physically possible. This is guaranteed by condition (4) that the entropy is 
a concave function. Alternatively, we may argue that since U, = 0 maximizes 
the probability distribution, the integration function ~b(U~) must be the 
same function of Ui that the entropy is of U. Greene and Callen (1951) 
have raised this to a principle, for if it were otherwise, they argue that there 
would be a separate thermodynamics for the microcanonical and canonical 
ensembles. We have shown that this principle rests on the validity of 
Stirling's approximation in the case where the independent extensive 
variable is the average mole number (Lavenda and Dunning-Davies, 
in press). 
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Consequently, the relation between the concavity of the entropy and 
the law of error leading to the average value as most probable value of  the 
energy is 

f (  U~[ U) = A exp{S(U~) - S (U)  - S'( O)( U~ - O)} (8) 

where we have identified ~(U~) with the "stochastic" entropy S(Ui) since 
it is a function of  the observed energy. The link between the error law for 
the energy (8) and the state of  nature of  the system ~s given by the second 
law, (2), which defines the inverse temperature/3. Introducing (2) into the 
law of  error (8) gives 

f(U~I/3) = A exp{-  U~/~ + S(U~) + L(/3)} (9) 

where 

L(fl ) = f l U -  S( O) (10) 

which is the Legendre transform with respect to the energy. 
The error law, written in the form (9), is clearly seen to satisfy Neyman's  

factorization criterion in order for distribution to admit a sufficient statistic. 
As a problem of point estimation, we would replace the true value of/3 by 
another estimate and use the sample mean (1), which is now seen to be a 
sufficient statistic, to estimate the true value of/3. The usual way is to use 
Fisher's method of maximum likelihood, which constructs the likelihood 
function from the joint distribution (5). We shall now give an alternative 
method which simply interchanges the endpoints of  the interval in the law 
of error for the extensive variable to produce a likelihood function which 
is independent of the sample size. 

3. ERROR LAW AS A LIKELIHOOD FUNCTION 

The second law (2) defines the inverse temperature, which provides 
knowledge of the "state of  nature" of  the system, since it relates the 
probability distribution to the physical state of the system. However, in the 
same way that it is essential to determine the probability of deviations in 
the extensive variables from their most probable value, so it is necessary to 
consider the statistical character of the knowledge of the state of  nature. 
For if the state of nature were known exactly, then no observation of the 
energy would provide a better estimate of  it than what is already known. 
In other words, no experiment would be informative. 

The second law (2) converts the error law for the energy (8) into (9), 
A 

for which the best estimator of fl, namely/3,  has the highest probability. 
However, if we want to find a measure of rational belief in a value of/3,  
we would start with a probability distribution 

f(Ui[/3) = A exp{S(Ui) + L(/3 ) -/3U~} (11) 
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where L( f l )  is related to the moment generating function by 

exp[-L(f l ) ]  = ~ A exp{- /3Ui  + S(  Ui)} 
i = 1  

The distribution (11) depends upon a parameter fl which is to be 
estimated from a sample of m observations on the energy. To this end, we 
form the joint or "sample" distribution (5), 

f (  UI, . . . , Um[fl ) = A m e x p { m [ - / 3 U  + S ( U )  + L(/3)]} = f ( O [ f l )  (12) 

Owing to the extensitivity of the entropy and its Legendre transform 
(12) depends on the observations of the energy only through the sample 
mean (1). In other words, the entropy obtained by combining m subsystems, 
all having the same value of the parameter ]3, is the sum of the entropies 
of the individual subsystems. An increase in entropy results from the 
thermal interaction of subsystems that do not have a common value of the 
parameter/3. 

The "likelihood" function (12), for a fixed sample mean, provides a 
subjective probability measure for different values of/3.  The maximum 
likelihood method inverts the functional dependence in (12), where/3 is 
now considered as the variable and 0 the parameter. Only in the case (i.e., 
the Bayes case) where fl is equipped with a prior probability density can 
a probabilistic interpretation be given to (12); otherwise, we must be content 
with comparing the likelihoods of different values of/3. 

The maximum likelihood estimate is obtained as the solution of 

since 

0 
0--fl log f(OI/3) = m[L'(/3) - U] = 0 (13) 

0 2 ^ 

aft 2 log f ( U l f i )  = mL"(/3) < 0  

This is a consequence of the fact that the strict concavity property of the 
entropy is transferred to its Legendre dual, 

L'(fi)  = 1 / S " ( U )  < 0 (14) 

By the implicit function theorem, the likelihood equation (13) may be solved 
for the maximum likelihood estimate/3 = ]3 (U). Since S and L are Legendre 
transforms of one another, the maximum likelihood estimate fi will coincide 
with the thermodynamic definition of the inverse temperature (2). 

The joint distribution (12) is an m-fold product of distributions 

f#(OI/3)  = A exp{-/3/] + S(U) + L(/3)} (15) 
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It is quite remarkable that this distribution results from interchanging the 
endpoints of the interval in the error law (8), 

f # (  OI Ui) = A exp{S(O) - S(Ui) + S'( Ui)( U~ - O)} (16) 

Owing to the concavity condition, 

S(O) - S(U~) + S'( U~)( Ui - O) < 0 (17) 

(16) is, again, a proper probability distribution. In fact, the sum of the two 
conditions of concavity, (4) and (17), is 

( u~ - O ) [ s ' ( u , )  - s ' ( O ) ]  < 0 

showing that the slope of the entropy is monotonically decreasing. In 
thermodynamics, this inequality guarantees that heat will not flow spon- 
taneously from a hot to a cold body or, equivalently, that the heat capacity 
is always positive definite. 

In the Bayes sense, the error laws (8) and (16) can be considered to 
be inverses of each other for which "cause" and "effect" have been inter- 
changed. We are reasoning from a sample of m observations made on the 
energies of m subsystems, each being characterized by a parameter /3~. 
However, nothing is known about these parameters, so that, in accordance 
with the principle of indifference, we set 

/3 = S'(U,) (18) 

for each of the subsystems. Certainly, when the subsystems are allowed to 
interact thermally and left alone for a sufficiently long period of time we 
should expect that all the/3's will be the same. Inserting (18) into the error 
law (16) results in (15), where the Legendre transform 

L(/3) =/3U, - S(U,) (19) 

is the same for each subsystem. 
The maximum likelihood estimate maximizes the posterior probability, 

which, according to Bayes' theorem, is 

f ~  (/31 O) = f # (  01/3)f# (/3)/f# (O) (20) 

where the prior densities are f#(/3) and 

i0 o f#(O)  = f#(OI/3)f~(/3) d/3 (21) 

If the prior probability density fe(/3)  is uniform, the posterior probability 
(20) is propo~io_nal to the conditional probability, or likelihood function, 
(15) and/3 =/3(U) will be a solution of both the second law (2) and the 
likelihood equation (13). For /3=~, the exponent in (15) attains its 
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supremum value of zero on account of  the Legendre transform (10). In the 
case where the prior density is not uniform, there is a distinction between 
the probability densities (12) and (15). Since the logarithm of the former 
increases linearly with the sample size, it will ultimately dwarf the logarithm 
of the prior density as the sample size increases without limit. The same is 
not true of  the conditional probability (15) and another form of asymptotic 
equivalence must be sought. 

In statistical thermodynamics, other asymptotic limits are of interest, 
such as when the number of degrees of  freedom of a system is very great 
(Gibbs, 1902). The logarithm of the conditional probability (15) will then 
dwarf the prior density, since the latter is independent of the number of 
degrees of  freedom, as the following example will show. 

Consider an ideal gas whose fundamental relation is 

S( U, V, N ) =  N log( U"VrN s) 

Similar relations apply to each of  the m subsystems. The exponents must 
add to zero in order that the entropy be extensive. It will prove more 
convenient, however, to work with molar quantities where the fundamental 
relation for the composite and ith subsystem are, respectively, 

s(~, ~) = log(~"~ r) (22) 

and 

si = log(u 7 vT) (23) 

Due to our lack of knowledge, each subsystem will be characterized by the 
same value of/3, where 

Osit n = /3 (24) 

For, if each system did not have the same value of/3,  the entropy would 
not be additive. The Legendre transform of the molar entropy si, with 
respect to the molar energy ui, is 

I(/3) = n log/3 - r log vi+ n - n log n (25) 

In terms of  molar quantities, the conditional probability density (15) is 

f#(ti l /3) = A(/3a)" exp{-/3t7 + n - n log n} (26) 

Choosing the prior density of the scale parameter as 

f#( /3)  = 1//3 (27) 
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we have that the prior density of (21) will be unity if we set A =  n ! / F ( n ) .  
Then, according to Bayes' theorem (20), the posterior probability density 
for the scale parameter is 

_ ( / 3 ~ ) . - 1  _ 

f#(/3la) = u F - ~ -  ~ e -~u (28) 

which is again a gamma density. As a function of/3,f#(~1/3) is the likelihood 
function Lf whose logarithm is 

In Lf(/31~) = - / 3 a +  n ln(/3a) 

The likelihood function has a unique maximum at/3 =/3, where /3 is the 
solution to the likelihood equation 

0 n 
- - l n ~ = - ~ + - - = 0  
a / 3  /3 

Apart from supplying the correct normalization so that the posterior density 
(28) will be a proper probability density (27) is Jeffreys' (1961) second rule 
that applies to scale parameters which can assume values from 0 to ~ .  The 
integral of (27) over all values of/3 is infinite and Jeffreys uses it as his 
definition of certainty. Hence, the improper probability density is used to 
represent ignorance about/3. The maximum likelihood estimate will coincide 
with the one that maximizes the a posteriori  density (20) when n >> 1, where 
n is half the number of degrees of freedom. In this limit, the logarithm of 
(26) dwarfs the logarithm of (27). 

4. THERMODYNAMIC UNCERTAINTY RELATIONS 

We have seen that fluctuations in the energy cause fluctuations in its 
conjugate intensive variable. In order to emphasize the symmetry between 
the two, we consider the energy to be a continuous random variable and 
compare the variances of the probability densities (9) and (15). 

The logarithm of the moment generating function of the probability 
density (9), 

L o L(~) = - log  exp{-flu + S(u)} du - l o g  A (29) 

is a completely monotone function, since its derivatives alternate in sign. 
The first moment is just the stationarity condition of the likelihood function 
(13), while the second central moment is 

L"( f i )  = - ( u  - tT) 2 - - (Au)  2 < 0 (30) 
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where the bar denotes averaging. Expression (30) clearly brings out the 
relation between the concavity of the Legendre transform of the entropy 
and the stability properties of thermodynamic systems; since (Au) 2= 
- t i ' ( f i ) ,  the heat capacity per particle C = -/32a'(/3) is necessarily positive. 

The logarithm of the moment generating function of the conditional 
probability density (15), 

L o S0i) = - log  exp{-~a  + L(/3)} d/3 (31) 

is also a completely monotone function. A comparison of (29) and (31) 
shows that the roles of the Legendre dual functions have been interchanged, 
although their physical meanings must be kept quite distinct (Lavenda, 
1988). The "structure" function f~(u) = exp[S(u)] represents the density of 
states in the energy interval between u and u + du. Although we may formally 
consider ~(/3) = exp[L(/3)] as a "density of states" for the parameter to lie 
in the interval between/3 and/3 + d/3, it cannot be given a physical interpreta- 
tion analogous to the structure function, which contains all the mechanical 
information about the state of the system (Khinchin, 1949). This is certainly 
a manifestation of the fact that the random variable whose probability 
density is (15) cannot be interpreted in the limit-of-frequency, but, rather, 
in the sense of degree-of-belief. 

The first moment calculated from (31) is the second law (2), provided 
the average and most probable values coincide. The second central moment 
is 

s " ( O )  = - -at  2 < 0 (32) 

which again shows how concavity is related to thermodynamic stability. 
The average and mostAprobable values of /3  will coincide i f /3(u)  is an 
unbiased estimator of/3(/i);  that is (Lavenda, 1987), 

( u )  - d u  = o 

Differentiating with respect to fi yields 

- 1 +  [ / 3 ( u ) - / 3 ( a ) ] [ t ' ( / 3 ) - u ] f ( u l / 3 )  du=O 

or, equivalently, 

A/3Au -- (/3 - fi)(u - a) = -1  (33) 

which is the covariance of the random variables. The correlation coefficient, 

P ~ A/3Au/[(A/3 )2 (Au)2]l/2 (34) 
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is a measure of  the "degree-of-association" between the random variables. 
Since p ~ [ - 1 ,  1], squaring both sides of  (34) and using the value of  the 
covariance given in (33) gives 

(a/3)2(au)2 _ 1 (35) 

which is a prototype of  a thermodynamic uncertainty relation (Lavenda, 
1987). 

In the statistical literature, inequalities of  the form (35) are known as 
Cramrr -Rao  inequalities. These inequalities place lower bounds on the 
variance. From the relation between the second derivatives of the Legendre 
transforms (14) and their relations to the variances (30) and (32), it is seen 
that the equality applies in the uncertainty relation (35). Fisher refers to 
the negative of (30) as the amount of information in the sample. The 
uncertainty relation gives the notion an intuitive appeal, since the more 
information we have, the better will be our estimation of the inverse 
temperature. The inverse of the information represents the lower bound for 
the variance of any unbiased estimator of the inverse temperature. This 
interpretation lends further support to the asymmetry of the two densities 
(9) and (15) in that the likelihood function (15) determines the best estimate 
of the parameter in terms of the sample mean energy and not contrariwise. 
The inverse of the variance of  the probability density (9) is the lower limit 
of the variance among a// unbiased estimators. 

5. DUAL PROBABILITY DISTRIBUTIONS 

In this section, we derive the probability distributions for intensive 
variables that can be interpreted in the limit-of-frequency. The error laws 
for extensive variables will all have a structure similar to (8), which identifies 
the sample mean as the most probable value of the quantity measured. This 
is due to their property of  additivity. There is no reason to suppose that the 
error laws for intensive variables will identify the mean value with the most 
probable one, and consequently, their laws of error may have a structure 
different from (8). But just as the intensive variables are derived quantities 
in thermodynamics, so, too, will be their error laws. It is precisely the 
Legendre transform which allows the error laws for intensive variables to 
be derived from the error laws for their conjugate variables. 

Introducing the Legendre transform (10) and 

L(/3i) = /3 ,u , -  S(u,) (36) 

into the error law for the energy (8) gives 

f(/3,1~) = A exp{L(/3) - L(/3,) - L'(/3,)(/3 -/3,)} (37) 
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which is a proper  probability distribution on account of  the concavity 
criterion of  the Legendre transfrom of the entropy. A comparison of the 
Legendre transforms (19) and (36) shows that we are not claiming ignorance 
about the initial values of  the parameters /3i that determine the state of  
nature of  the m subsystems. We will now show that (37) is a law of  error 
which identifies mean values, other than the sample mean, as the most 
probable values of  the quantity measured. 

Again consider the fundamental relations for composite, (22), and 
individual subsystems, (23), consisting of  an ideal gas. According to the 
second law (2), the composite system will have an inverse temperature 

= n~ 3, while those of the individual subsystems will be given by/3i = n~ u~. 
The Legendre transform (10), in molar form, is 

I(/3) = n log /3+  n - n log n - r log ~ (38) 

while 

1(/3i) = n log/3i + n - n log n - r log vi (39) 

which replace (25) since the temperatures of  the subsystems are the sample 
data. Assuming the gas to be uniform, vi = fi, the dual (37) of the error law 
for the energy (8) is 

f(/3i]fl)=a(~)"exp{-n~(--~i--l~) } (40) 

This is precisely the inverted gamma density. Consider, for the moment,  
that both u and/3  are continuous random variables. The inverted gamma 
density is related the canonical distribution, evaluated at the maximum 
likelihood value of the scale parameter, 

F(n) e -~u du (41) 

by a change of variable. Introducing u = n//3 into (41) results in 

f(/3lfl)=(fl) (~'lnen<'-~/e'\[3' (42) 

which will be the same as (40) if we set A = n//3. The derivation of the 
inverted gamma density (42) f romthe  proper normalized probability density 
(41) by a simple one-to-one differentiable change of  variable guarantees 
that it, too, is a proper  normalized probability density. We shall now show 
that the inverted gamma density (40) is the error law leading to the harmonic 
mean as the most probable value of the inverse temperature. 
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In order that (6), where the prime now stands for differentiation with 
respect to/3, be equivalent to the definition of the harmonic mean, 

( 1 _ 1 ]  =0 (43) 
i=1  k / 3 i  / 3 t  / 

we require (Keynes, 1921) 

t A ,~ 1 
f'(/3,1/3) + ,9 . . . . .  [ 1 _ _ ~  
f(/3,1/3) t~) k/3i / 3 ) = 0  (44) 

where "9"(/3) may be interpreted as a Lagrange multiplier for the constraint 
(43). Integrating by parts then gives 

,, 1 1 _ 0(/3,) ]j~ f (/3i[/3): A exp{-'9'(/3)(~3-~i-~) + 0(/3) (45) 

where 

I "9'(x) 
~o ( x ) = - - ~  dx 

The error law (45) identifies the harmonic mean as the most probable value 
of the inverse temperature. This law of error coincides with (40) for a 
Lagrange multiplier given by "9"= n. 

To grasp the physical significance of this result, consider two identical 
bodies that are initially at the temperatures 7"1 and 7"2, where 7"1 > T2. A 
quantity of heat -~Ol is withdrawn from the hotter body and an amount 
6Q2 is introduced into the colder one. In a completely irreversible process, 
no work is done, and the final temperature of the composite system is the 
arithmetic mean of the two initial temperatures, 7"--�89 + T2). Owing to 
the fact that no work is performed, this is the highest attainable temperature 
that the composite system can achieve. Since T is the arithmetic mean,/3 
is the harmonic mean. 

According to the deterministic viewpoint of thermodynamics, the com- 
posite system will certainly reach the final temperature T after thermal 
equilibrium has been established. However, the outcome of bringing two 
bodies, initially at different temperatures, into thermal contact is less than 
certain, since the quantities of heat that are transferred from one body to 
the other are the uncontrollable part of the energy. The controllable part 
of theenergy is the work and given that this is zero, all we can surmise is 
that T is the most probable value of the temperature of the composite 
system. In other words, the act of thermal interaction makes the predicted 
outcome one of high probability rather than a certainty. 
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At the other extreme, the process is completely reversible and the 
maximum amount of work is performed. The composite system then attains 
the lowest temperature possible. We now require (6) to be equivalent to 
the definition of the geometric mean 

T =  (i=~ T/) 1/m (46) 

attainable final temperature. We may write which is the minimum 
(46) equivalently as 

log( )0 
i = 1  

Following the same procedure as before leads to a law of error 

f ( T~l T) = A exp { ~o'( 7") log ( ~ )  + x( T) - x( T~ ) } (47) 

where 

x(x) = [ ~'(x) ax 
d X 

which identifies the geometric mean as the most probable value of the 
temperature measured. We now take note of the fact that if the geometric 
mean of the observations yields the most probable value of the quantity, 
the arithmetic mean of the logarithm of the observations will yield the most 
probable value of the logarithm of the quantity (Keynes, 1921). Since the 
entropy of an ideal ~gas is proportional to the logarithm of the temperature, 
we put ~0'= n log T=  $, where S is the average entropy, and 2 x ( T ) =  
n(log 2) 2= S2/n. This has the effect of transforming the error law for the 
temperature (47) into the normal law of error 

f (S i[S) :Aexp{  (S i -  e)2~ (48) 
2n J 

for the entropy. 
Therefore, in a reversible process the entropy becomes the independent 

additive variable. The normal law (48) usually arises in the limit of small 
fluctuations when the entropy is taken as the independent variable (Landau 
and Lifshitz, 1969). The mean-square fluctuation of the entropy (AS) 2 = n 
corresponds to that of an ideal gas and the relative fluctuation is proportional 
to n -1/2, which tends to zero as the number of degrees-of-freedom increases. 
This small-fluctuation limit is incorporated into the error law 

f(T/I f )  = A exp { n/  Ti\2] - 5  ~log-~) j (49) 
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by the fact that the average entropy is proportional to the logarithm of the 
geometric mean value of  the temperature which is the lowest attainable 
temperature. We therefore expect fluctuations in reversible processes to be 
smaller than in irreversible processes. Furthermore, (49) predicts that posi- 
tive and negative deviations of  the same absolute magnitude are not equally 
likely, while the corresponding normal law for the entropies (48) satisfies 
the condition that negative and positive errors of  the same absolute magni- 
tude are equally likely. 
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